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Abstract
We construct a generalized concurrence for general multipartite states based
on local W-class and GHZ-class operators. We explicitly construct the
corresponding concurrence for three-partite states. The construction of the
concurrence is interesting since it is based on local operators and therefore
gives some hints on the classification of multipartite states.

PACS number: 03.65.Ud

1. Introduction

Concurrence is one of the most applied measures of entanglement. In recent years there
have been some proposals to generalize this measure of entanglement to general multipartite
states [1, 2]. Recently, we have also defined concurrence classes for multi-qubit mixed
states based on an orthogonal complement of a positive operator valued measure (POVM) on
quantum phase [3]. Moreover, we have constructed different concurrence classes for general
pure multipartite states in [4]. In this paper, we will construct generalized concurrence for
pure general multipartite states based on the complement of a POVM on quantum phase. In
particular, by rewriting orthogonal complement of a POVM on quantum phase as sums and
taking the expectation value of each of these operators, we are able to construct a general
formula for concurrence.

We will consider a general multipartite quantum system with m subsystems which
we denote as Q = Q(N1, N2, . . . , Nm), where Nj are dimension of subsystem j for all
1 � j � m and denoting its general state as |�〉 = ∑N1

l1=1 · · ·∑Nm

lm=1 αl1,l2,...,lm |l1, l2, . . . , lm〉 ∈
HQ = HQ1 ⊗ HQ2 ⊗ · · · ⊗ HQm

, where the dimension of thej th Hilbert space is given by
Nj = dim

(
HQj

)
. Note also that Q(N1, N2, . . . , Nm) is just a notation for a m-partite quantum

system and it is not a function. Moreover, let ρQ = ∑N
i=1 pi |�i〉〈�i |, for all 0 � pi � 1

and
∑N

i=1 pi = 1, denote a density operator acting on the Hilbert space HQ. Finally, let
us introduce a complex conjugation operator Cm that acts on a general multipartite state
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|�〉 as Cm|�〉 = ∑N1
l1=1 · · · ∑Nm

lm=1 α∗
l1,l2,...,lm

|l1, l2, . . . , lm〉. The most well-known examples of
multi-qubit states are |�Wm〉 and |�GHZm〉 states. These quantum states are defined by

|�Wm〉 = 1√
m

(|1, . . . , 1, 2〉 + |1, . . . , 2, 1〉 + · · · + |2, 1, . . . , 1〉) (1)

and |�GHZm〉 = 1√
2
(|1, . . . , 1〉 + |2, . . . , 2〉). In the following section, we will call our local

operators based on these classes of states.

2. General multipartite states

In this section, we will construct concurrence for general pure multipartite states
Qp(N1, . . . , Nm), where the superscript p indicates that we are only considering pure
multipartite states. In our construction, we will use linear operators that are constructed
by the orthogonal complement of POVM on quantum phase [3, 4]. The POVM for each
subsystem Qj is defined by

�Qj
(ϕkj ,lj ) =

Nj∑
lj ,kj =1

eiϕkj ,lj |kj 〉〈lj |, (2)

where ϕkj ,lj = −ϕlj ,kj

(
1 − δkj lj

)
. Moreover, the orthogonal complement of our POVM is

given by �̃Qj

(
ϕkj ,lj

) = INj
− �Qj

(
ϕkj ,lj

)
, where INj

is the Nj -by-Nj identity matrix for
subsystem j . For a m-partite quantum system we construct a operator (matrix) by taking the
tensor product of m subsystems as follows:

�̃Q
(
ϕk1,l1 , . . . , ϕkm,lm

) = �̃Q1

(
ϕk1,l1

) ⊗ · · · ⊗ �̃Qm

(
ϕkm,lm

)
, (3)

where �̃Q
(
ϕk1,l1 , . . . , ϕkm,lm

)
has phases that are sums or differences of phases originating

from two and m subsystems. That is, in the latter case the phases of �̃Q
(
ϕk1,l1 , . . . , ϕkm,lm

)
take the form

(
ϕk1,l1 ± ϕk2,l2 ± · · · ± ϕkm,lm

)
and identification of these joint phases makes our

distinguishing possible. Thus, we can define linear operators for the Wm class which are sums
and differences of phases of two subsystems, i.e.

(
ϕkr1 ,lr1

± ϕkr2 ,lr2

)
. That is, for the Wm class

we have

�̃Wm

Qr1r2
(�m) = IN1 ⊗ · · · ⊗ �̃Qr1

(
ϕ

π
2
kr1 ,lr1

) ⊗ · · · ⊗ �̃Qr2

(
ϕ

π
2
kr2 ,lr2

) ⊗ · · · ⊗ INm
, (4)

where 1 � r1 < r2 � m and the notation �̃Qj

(
ϕ

π
2
kj ,lj

)
means that we evaluate �̃Qj

(
ϕkj ,lj

)
at ϕkj ,lj = π/2 for all kj , lj . In order to simplify our presentation, we have used
(�m) = (k1, l1; . . . ; km, lm) as an abstract multi-index notation. Next, we could write the
linear operator �̃Wm

Qr1r2
(�m) as a direct sum of the upper and lower anti-diagonal

�̃Wm

Qr1r2
(�m) = U�̃Wm

Qr1r2
(�m) + L�̃Wm

Qr1r2
(�m). (5)

For the GHZm class, we define linear operators based on our POVM which are sums and
differences of phases of m-subsystems, i.e.

(
ϕkr1 ,lr1

± ϕkr2 ,lr2
± · · · ± ϕkm,lm

)
. That is, for the

GHZm class we have

�̃GHZm

Qr1r2
(�m)= �̃Q1

(
ϕπ

k1,l1

) ⊗ · · · ⊗ �̃Qr1

(
ϕ

π
2
kr1 ,lr1

) ⊗ · · · ⊗ �̃Qr2

(
ϕ

π
2
kr2 ,lr2

) ⊗ · · · ⊗ �̃Qm

(
ϕπ

km,lm

)
,

(6)

where �̃Qj

(
ϕπ

kj ,lj

)
indicates that we evaluate �̃Qj

(
ϕkj ,lj

)
at ϕkj ,lj = π for all kj , lj . Note also

that, in this case, we get an operator which has the structure of the Pauli operator σx embedded
in a higher-dimensional Hilbert space and coincides with σx for a single-qubit. There are
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m(m−1)

2 linear operators for the GHZm class. Next, we write the linear operators for the GHZm

class as

�̃GHZm

Qr1r2
(�m) = P1�̃

GHZm

Qr1r2
(�m) + P2�̃

GHZm

Qr1r2
(�m) + · · · , (7)

where the operators Pi�̃
GHZm

Qr1r2
(�m) are constructed by pairing of the anti-diagonal elements

of the POVM with sums and differences of quantum phases. For higher dimensional quantum
systems, it is difficult to write �̃GHZm

Qr1r2
(�m) in terms of Pi�̃

GHZm

Qr1r2
(�m). However, we will give

an explicit expression for general three-partite states in the next section. Moreover, we define
the linear operators for the GHZm−1 class of m-partite states based on our POVM which are
sums and differences of phases of m − 1-subsystems, i.e.,

(
ϕkr1 ,lr1

± ϕkr2 ,lr2
± . . . ϕkm−1,lm−1

)
.

That is, for the GHZm−1 class we have

�̃GHZm−1

Qr1r2 ,r3 ···rm−1
(�m) = �̃Qr1

(
ϕ

π
2
kr1 ,lr1

) ⊗ �̃Qr2

(
ϕ

π
2
kr2 ,lr2

) ⊗ �̃Qr3

(
ϕπ

kr3 ,lr3

)
⊗ · · · ⊗ �̃Qrm−1

(
ϕπ

krm−1 ,lrm−1

) ⊗ INm
, (8)

where 1 � r1 < r2 � r3 � · · · � rm−1 � m. Note that we need to write these operators
also as direct sums as we did for the GHZm class since they belong to the same operator class.
Then, for a general pure state, let

C
(
QWm

r1r2

) =
∑
∀kj ,lj

(∣∣〈�|U�̃Wm

Qr1r2
(�m)Cm�〉∣∣2

+
∣∣〈�|L�̃Wm

Qr1r2
(�m)Cm�〉∣∣2)

,

C
(
QGHZm

r1r2

) =
∑
∀kj ,lj

∑
i�m−2

∣∣〈�|Pi�̃
GHZm

Qr1r2
(�m)Cm�〉∣∣2

(9)

and, e.g.,

C
(
QGHZm−1

r1r2,r3···rm−1

) =
∑
∀kj ,lj

∑
i�m−3

∣∣〈�|Pi�̃
GHZm−1

Qr1r2 ,r3 ···rm−1
(�m)Cm�〉∣∣2

. (10)

Then the concurrence is defined by taking the square root of the summands as follows:

C(Qp(N1, . . . , Nm)) =
(
Nm

{ ∑
1�r1<r2�m

C
(
QWm

r1r2

)
+

∑
1�r1<r2�m

C
(
QGHZm

r1r2

)

+
∑

1�r1<r2�r3�···�rm−1�m

C
(
QGHZm−1

r1r2,r3···rm−1

)
+ · · ·

})1/2

, (11)

where Nm is a normalization constant. This concurrence vanishes on product state by
definition. It also gives a reasonable measure of entanglement by construction. Note that for
three-partite states our concurrence consists of two parts—C

(
QW 3

r1r2

)
and C

(
QGHZ3

r1r2

)
—which we

will discuss in the next section. However, for four-partite states we have C
(
QW 3

r1r2

)
, C

(
QGHZ3

r1r2

)
,

and C
(
QGHZ3

r1r2,r3

)
. Moreover, we can in principle define a concurrence for arbitrary multipartite

states as

C(Q(N1, . . . , Nm)) = inf
�

∑
i

piC(|�i〉), (12)

where infimum are taken over all pure decompositions of ρQ and C(|�i〉) is given by
C(Qp(N1, . . . , Nm)) for all i. Our concurrence is constructed by a set of local operators
which we have called Wm and GHZm classes of operators. Thus, this construction of
concurrence not only can quantify the entanglement of multipartite state but also it gives
some hints on the possible classification of such quantum systems. As an example let us
consider the multi-qubit |�Wm〉 state. Then, the concurrence measure for the |�Wm〉 state gives
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Cp(Q(2, . . . , 2)) = ( 2(m−1)

m
Nm

)1/2
. The normalization constant Nm can be chosen in such a

way that 0 � C(Q(N1, . . . , Nm)) � 1.

3. General pure three-partite states

In this section, we will construct concurrence for a general pure three-partite quantum system
Qp(N1, N2, N3) based on the orthogonal complement of our POVM. For three-partite states,
we have two different joint phases in our POVM, those which are sums and differences of
phases of two subsystems, i.e.

(
ϕk1,l1 ±ϕk2,l2

)
and those which are the sums and differences of

phases of three subsystems, i.e.
(
ϕk1,l1 ± ϕk2,l2 ± ϕk3,l3

)
. The first one identifies the W3 class

operator and the second one identifies the GHZ3 class operator. For the W3 class, we have

∑
1�r1<r2�3

C
(
QW 3

r1r2

) =
N1∑

l1>k1=1

N2∑
l2>k2=1

N3∑
k3=l3=1

∣∣αk1,l2,k3αl1,k2,l3 − αk1,k2,k3αl1,l2,l3

∣∣2

+
N1∑

l1>k1=1

N3∑
l3>k3=1

N2∑
k2=l2=1

∣∣αk1,k2,l3αl1,l2,k3 − αk1,k2,k3αl1,l2,l3

∣∣2

+
N2∑

l2>k2=1

N3∑
l3>k3=1

N1∑
k1=l1=1

∣∣αk1,k2,l3αl1,l2,k3 − αk1,k2,k3αl1,l2,l3

∣∣2
, (13)

and for the GHZ3 class, we have

∑
1�r1<r2�3

C
(
QGHZ3

r1r2

) =
N1∑

l1>k1=1

N2∑
l2>k2=1

N3∑
l3>k3=1

[∣∣αk1,l2,l3αl1,k2,k3 − αk1,k2,k3αl1,l2,l3

∣∣2

+
∣∣αk1,l2,k3αl1,k2,l3 − αk1,k2,l3αl1,l2,k3

∣∣2

+
∣∣αk1,k2,l3αl1,l2,k3 − αk1,l2,l3αl1,k2,k3

∣∣2
+

∣∣αk1,l2,k3αl1,k2,l3 − αk1,k2,k3αl1,l2,l3

∣∣2

+
∣∣αk1,l2,k3αl1,k2,l3 − αk1,l2,l3αl1,k2,k3

∣∣2
+

∣∣αk1,k2,l3αl1,l2,k3 − αk1,k2,k3αl1,l2,l3

∣∣2]
.

(14)

Note that these expressions are not equal to our W class and GHZ class concurrences
constructed in [4], where we have constructed our concurrences classes based on the direct
use of two classes of operators. Thus the concurrence for a general pure three-partite state is
given by

C(Qp(N1, N2, N3)) =

N3


 ∑

1�r1<r2�3

C
(
QW 3

r1r2

)
+

∑
1�r1<r2�3

C
(
QGHZ3

r1r2

)



1/2

. (15)

This concurrence also coincides with the generalized concurrence for three-partite states [1].
Moreover, for m-partite states with m � 3, our concurrence is not equal to concurrence
tensor [5].
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acknowledges the financial support of the Japan Society for the Promotion of Science (JSPS).



Concurrence for general multipartite states 15229

References

[1] Albeverio S and Fei S M 2001 J. Opt. B: Quantum Semiclass. Opt. 3 223
[2] Mintert F, Kus M and Buchleitner A 2005 Phys. Rev. Lett. 95 260502
[3] Heydari H 2005 J. Phys. A: Math. Gen. 38 11007–17
[4] Heydari H 2005 J. Phys. A: Math. Gen. 38 8667–79
[5] Heydari H and Björk G 2005 Quantum Inform. Comput. 5 146–55

http://dx.doi.org/10.1088/1464-4266/3/4/305
http://dx.doi.org/10.1103/PhysRevLett.95.260502
http://dx.doi.org/10.1088/0305-4470/38/50/009
http://dx.doi.org/10.1088/0305-4470/38/40/012

	1. Introduction
	2. General multipartite states
	3. General pure three-partite states
	Acknowledgments
	References

